

20220323 長濱地震地質調查報告

經濟部中央地質調查所

中華民國 111 年7月5日

地質調查:劉彥求、梁勝雄、陳盈璇

地表變形分析:陳建良、梁均合、梁勝雄

報告撰寫:劉彥求、林燕慧、梁勝雄、陳建良

責任審閱:林啟文

目錄

目錄	I
圖目錄	II
表目錄	III
摘要	1
壹、引言	3
貳、區域概況	5
一、區域地質	5
二、地震資料	18
參、地表地質調查	19
一、池上斷層沿線調查結果	21
二、其他斷層沿線調查結果	24
三、受地震引發土壤液化現象	27
四、其它受地震引發之現象	29
五、小結	32
肆、地表變形觀測結果	
一、東部地區十年來的地表變形情形	
二、同震水平位移情形	
三、同震垂直位移情形	
四、合成孔徑雷達差分干涉觀測結果	43
五、斷層模擬結果	47
六、地表變形觀測小結	49
伍、結論與建議	
一、結論	58
二、建議	59

致謝	}	61
參考	文獻	

圖目錄

圖 1、中央氣象局發布之地震報告與震央附近等震度圖	3
圖 2、臺灣地質分區圖 (陳文山, 2016)	6
圖 3、本次地震的震央附近的活動斷層分布	7
圖 4-1、池上斷層北段條帶地質圖	9
圖 4-2、池上斷層南段條帶地質圖	10
圖 5、「活動斷層地質敏感區(F0002 池上斷層)」位置圖	11
圖 6、瑞穗斷層條帶地質圖	13
圖 7、瑞穗斷層活動斷層地質敏感區位置圖	14
圖 8、奇美斷層條帶地質圖	16
圖 9、「活動斷層地質敏感區(F0015 奇美斷層)」位置圖	17
圖 10、中央氣象局提供之寬頻 CMT 震源機制解	18
圖 11、0323 地震地表破裂調查結果分布圖	20
圖 12、 麻汝附近農路上一系列擠壓拱起裂隙	21
圖 13、富里鄉中山路富禮教堂周圍地區多處破裂及錯移	22
圖 14、電光地區水圳旁拱裂現象加劇	22
圖 15、玉里舊鐵橋東側,橋梁表層柏油受擠壓撓曲	22
圖 16、富北地區田邊擋土牆有受壓拱起及破裂現象	23
圖 17、萬安社區道路旁輕微擠壓破裂現象	23
圖 18、池上斷層上盤部分破裂現象	24
圖 19、池上鄉大坡池附近人工結構物新生破裂現象	24
圖 20、秀姑巒溪遊客中心人工建築物結構破壞	25
圖 21、德武地區建物及地表局部破裂現象	25
圖 22、春日地區建物及地表局部破裂現象	26
圖 23、豐濱地區部分道路壓縮破裂現象	26
圖 24、高寮大橋東側欄杆與產生新破損	27
圖 25、玉里大橋下小規模液化噴砂現象	28
圖 26、玉里舊鐵橋北側沙洲裂隙與噴砂	28
圖 27、瑞穗大橋附近具小規模液化噴砂現象	29
圖 28、玉長公路道路與人工建築物之結構破壞	30
圖 29、玉長公路邊坡滑動	30
圖 30、瑞港公路邊坡落石	31

圖	31、	玉興橋與側翻預力橋梁,鄰近堤防擠壓破裂	31
圖	32、	0323 地震震後,本所水準測量工作	34
圖	33、	0323 地震震後,本所 GNSS 測量工作實例	34
圖	34、	東部地區相對於澎湖白沙站(S01R)之GNSS水平方向速度	臣
	場		35
圖	35、	東部地區相對於澎湖白沙站(S01R)之GNSS 垂直方向速度	臣
	場	3	35
圖	36、	東部地區 GNSS 連續追蹤站分布圖	37
圖	37、	GNSS 連續追蹤站外觀	38
圖	38、	東部地區 3月 23日地震之水平方向同震位移分布圖	39
圖	39、	水準測量基本原理示意圖	1
圖	40、	東部地區 3月 23日地震之精密水準測量結果。	12
圖	41、	東部地區 3月 23日地震之垂直方向同震位移分布圖	13
圖	42、	以監測火山地表變形為例,利用不同時間的合成孔徑雷達景	1
	像	,進行干涉演算	15
圖	43、	歐洲哨兵衛星 1A 之合成孔徑雷達差分干涉同震地表變形影	
	像	4	16
圖	44、	歐洲哨兵衛星視衛星方向剖面分析	ŀ 7
圖	45、	中央氣象局本次地震餘震分布及剖面圖	18
圖	46、	斷層模型水平及垂直方向擬合結果	19

表目錄

表1GNSS 連續追出	暰站同震位移資料表	
表 2 GNSS 移動站 [同震位移資料表	
表3精密水準測量;	測線一覽表	
表4精密水準測量	同震位移資料表	

-I-

摘要

民國 111 年 3 月 23 日凌晨 1 時 41 分,東部發生芮氏規模 6.7 的 地震(第 019 號),震央在長濱近海,震源深度 25.7 公里,隨後發 生芮氏規模 6.2 餘震(第 020 號),震源位置相近,深約 22.6 公里。 地震造成部分地區道路及橋梁等建物產生一些災情,本所由構造與 地震地質組派員進行野外調查,範圍遍及東部,最後重點集中於池 上與奇美斷層周圍地區。

經分析 0323 地震主震之斷層面解及其餘震震央分布資料,以及 地表變形觀測結果,依斷層錯位模型初步成果指出:造成這次地震 的孕震構造,推測為東傾斜約 62 度的逆衝斷層,滑移深度 8km 至約 40km;而地表地質調查則顯示池上斷層、奇美斷層沿線均有輕微地 表破裂現象。

大地測量方面,以全臺 GNSS 連續站、GNSS 移動站、精密水準 測量與 Sentinel-1A 衛星雷達干涉等大地測量觀測資料,進行地表同 震位移場之解算與分析。連續站結果指出:最大同震位移位於震央 北邊的大港口測站,同震抬升為 104.2 mm,同震位移水平分量向東 為 53.0 mm;同震位移水平分量向北為 34.1 mm。同震位移分布顯示 同震位移方向由北往南以順時針方向旋轉,震央北方以往東北方向 運動之向量為主,其中以大港口測站及豐濱測站有較大之量值,震 央南方則由長濱測站的東南方向運動往西南方逐漸轉為西南方向運 動;垂直方向位移則以抬升為主,震央 20 公里範圍內之測站有 30 mm以上之同震抬升量值。

此次地震地表破裂大多為沿著斷層既有破裂產生,建議應加強 地震地質調查工作與活動斷層觀測網的觀測與分析能力,期望能適

-1-

時提出相關資訊作為防災與應變之參據,減少地震發生可能帶來的 損失與傷害。 壹、引言

依中央氣象局發布的地震資訊:民國 111 年 3 月 23 日凌晨 1 時 41 分 38 秒,東部發生芮氏規模 6.7 的地震(第 019 號),震央在長 濱近海,震源深度 25.7 公里;隨後於 1 時 43 分 25 秒發生芮氏規模 6.2 餘震(第 020 號),震源位置相近,深約 22.6 公里(圖 1)。

圖1、中央氣象局發布之地震報告與震央附近等震度圖。

地震發生當夜,本所構造與地震地質組同仁馬上彙整蒐集地震 資料、災情與其它可能相關資訊,研判可能的發震構造與可能產生 破壞位置;衣德成技師於與本所討論後,出發進行調查,並熱心提 供資料及照片。

經主震及餘震震源投影與震度範圍分析,推測為海岸山脈中段 至南段島弧逆衝產生破裂所致,滑移面為東北走向,向東傾斜約 60 度,延伸至地表約為池上斷層北段,瑞穗以南到池上或關山之間, 由於此次地震震源深達 22.6 公里,研判於地表可能僅產生小規模變 形,針對東部縱谷斷層、奇美斷層等沿線進行巡查,以確認是否發 生相關地表破裂或相關的變形現象,調查範圍為花蓮縣花蓮市以南 至臺東縣臺東市,及鄰近震源位置鄉鎮的調查。 貳、區域概況

一、區域地質

臺灣位處環太平洋地震帶中,位於歐亞板塊和菲律賓海板塊的 斜向聚合處,菲律賓海板塊以每年約7-8公分的速度朝西北方向移動 碰撞歐亞板塊,於臺灣東部沿琉球海溝向北隱沒至歐亞板塊之下, 在板塊邊界產生逆斷層型態地震的孕震構造 (陳文山等,2018)。臺 東縱谷即為此板塊碰撞的縫合帶,宜蘭外海的沖繩海槽及花蓮外海 的琉球海溝與琉球島弧則屬於隱沒系統。

依陳文山(2016)的臺灣地質構造區分類,此次地震影響範圍 主要位於脊樑山脈地質區(IV、V)與海岸山脈地質區(VI)的交 接地帶(圖2);西側屬於脊樑山脈地質區的大南澳片岩帶(V), 是臺灣陸上最老的地質構造單元,主要由綠色片岩相以上的變質岩 構成的變質岩。

東側為海岸山脈地質區(VI)以火成岩與沉積岩為主要組成, 其地形、岩層、斷層與褶皺等主要構造多呈北10度至20度東走向, 大致平行板塊邊界的縱谷斷層走向,顯然板塊碰撞具有密切關係。 脊樑山脈與海岸山脈間為寬度介於3~6公里之縱谷平原,主要是未膠 結的沖積扇與沖積層,泥沙與礫石所組成的沉積物來源為西側脊樑 山脈與東側海岸山脈的岩層,局部受到縱谷的斷層系統影響,而有 褶皺或斷層。

地形上,自西側高達上千公尺的中央山脈,向東下降到略高於 海平面的縱谷平原與米崙臺地,再向東上升到丘陵地至局部數百公 尺的山脊,再向東快速下降至近海區域,不論在岩石特性、變形與 變質程度或地形特徵上,均顯現板塊交界位置的特徵。

-5-

圖 2、臺灣地質分區圖 (陳文山, 2016)。

此次0323地震主震(第019號)的震央位置位於臺灣東部海域, 餘震(第020號)位於花蓮縣長濱鄉海岸山脈與花東縱谷交界附近, 震央距池上斷層西側最近距離約9公里。

以下針對鄰近本次地震震央地區之活動斷層略作簡述,詳細的 活動斷層資料內容請參閱本所出版之二萬五千分之一活動斷層條帶 地質圖(圖 4-2)說明書,以及於2019年公告的「活動斷層地質敏感區 (F0002池上斷層)」劃定計畫書等資料(圖 5)。

圖 3、本次地震的震央附近的活動斷層分布圖。

池上斷層:

池上斷層,為逆移兼具左移分量之斷層,由花蓮縣玉里鎮春日 里向南南西方向經臺東縣池上鄉萬安,再向南延伸至鹿野鄉瑞隆村, 長約67公里(圖 4-2)(林啟文等人,2009),1951年臺東地震與2003年 成功地震皆造成池上斷層沿線部分地區地表破裂現象,由池上斷層 的古地震研究結果顯示,過去800年以來至少有5次地震事件造成沉 積層錯移,每次事件造成沉積層垂直位移數十公分,最大位移量約 60公分,推估斷層的活動周期約50-160 年。依調查資料而顯示,大 多數地表破裂都沿者同一位置或相近位置的既有斷層面再度活動, 除了斷層位置位於秀姑戀溪或卑南大溪的溪床上外,池上斷層沿線 因在多次重複的斷層作用下,形成有極好的地形特徵。地表破裂位 置則為目前現地可以觀察到之地表破裂直接影響之地區,依前人研 究(姜彦麟等人,2012;梁勝雄等人,2011; Lee et al., 2003, 2006,2009; Mu et al.,2011)及補充地質調查成果(顏一勤,2012) 均指出於池上斷層帶中,可以觀察到部分具地形變化特徵處,人工 結構物因受斷層作用的擠壓,造成結構物或地表破裂,此破裂部分 位於主斷層位置,部分則位於分支斷層的位置。池上斷層於2014年 公告劃定活動斷層地質敏感區(F0002)(圖5)

依據地震後之調查結果,從臺東寶華大橋至花蓮玉里鎮之間, 於關山鎮電光地區、池上鄉萬安地區、池上鄉大坡池、富里鄉富南 地區等舊有的成功地震地表破裂位置均發現有新生的破裂現象,同 時在富里鄉學富路及中山路沿線也有發現建物受擠壓而有新生破損, 另外池上斷層跡沿線部分河堤、道路等人工建物也伴有新生擠壓破 損現象。

-8-

圖 4-1、池上斷層北段條帶地質圖(引自林啟文等, 2009)

圖 4-2、池上斷層 南段條帶地質圖(引自林啟文等, 2009)

圖 5、「活動斷層地質敏感區(F0002 池上斷層)」位置圖(經濟部, 2014)。

瑞穗斷層:

穗斷層為臺灣東部花東縱谷中重要的活動斷層之一,斷層自花 蓮縣光復鄉富田村南延至玉里鎮德武里,全長約25公里,加計分支 斷層長度後,總長度約30公里,北連嶺頂斷層,南接池上斷層,屬 花東縱谷一系列斷層中之一段,上盤為八里灣層,下盤則為現代沖 積層,為一兼具左移分量之逆移斷層,呈東北走向,斷層向南延伸 在春日附近奇美斷層連接(圖 6)。斷層沿線具有明顯的斷層線狀崖之 構造特徵。本斷層也是1951年11月25日地震的地震斷層,除了1951 年的地震之外,由槽溝開挖結果顯示尚有3次古地震事件,古地震的 活動週期約190±20年(陳文山等,2006),於2016年公告劃定活動 斷層地質敏感區(F0014)(圖 7)。

依據地震後的調查結果,瑞穗斷層沿線只在泛舟遊客中心發現 建物有新生因擠壓而破損之現象,瑞穗大橋下方秀姑巒溪河床出現 裂隙,瑞穗大橋以北瑞穗斷層跡兩側則沒有發現有明顯地震相關的 變形或人工結構物破壞。

圖 6、瑞穗斷層條帶地質圖(引自林啟文等, 2009)

圖 7、瑞穗斷層活動斷層地質敏感區位置圖 (經濟部, 2016)。

奇美斷層:

奇美斷層為海岸山脈重要活動斷層之一,屬逆移斷層,該斷層 北起花蓮縣豐濱鄉豐濱村豐濱溪出海口附近,經八里灣、奇美,南 迄玉里鎮春日里,大致呈東北走向,敏感區長度約25公里(圖 8)。斷 層南端在春日里附近連接瑞穗斷層與池上斷層。於奇美村附近秀姑 巒溪河谷可觀察到都鑾山層的火成岩逆衝至八里灣層沉積岩之上, 由於斷層兩側岩性差異大,沿線具明顯地形崖特徵。於豐濱附近斷 層錯移了全新世河階礫石層,其內含年代5,000年內之紅陶碎片,因 此奇美斷層在該地區人類生活以來仍有活動跡象。此外,在玉里鎮 春日里地區鑽井結果定年資料顯示奇美斷層在距今2萬年內曾活動過。 於2016年公告訂定「活動斷層地質敏感區(F0015奇美斷層)」(圖 9)。

依據地震後之調查結果,奇美斷層西南段玉里鎮春日至德武地 區、以及最東北側豐濱地區,斷層跡上的人工結構物,均可發現受 擠壓的新生破壞;而奇美中段的德武至豐濱之間,因大多位屬難以 到達的陡峭山區,且受時間限制,並未前往調查。

圖 8、奇美斷層條帶地質圖(引自林啟文等,2009)

圖 9、「活動斷層地質敏感區(F0015 奇美斷層)」位置圖(經濟部, 2016)。

二、地震資料

111年3月23日凌晨1時41分,東部發生芮氏規模6.7的地震(第 019號),震央在長濱近海,震源深度25.7公里,隨後發生芮氏規模 6.2餘震(第020號),震源位置位於臺東縣長濱鄉,深約22.6公里。 經主震及餘震震源投影與震度範圍分析,推測為海岸山脈中段至南 段島弧向西逆衝活動所致,滑移面為東北走向與傾斜約60度,延伸 至地表似為池上斷層,北界則近奇美斷層南段,南界未逾利吉斷層。 當夜即與同仁彙整蒐集地震資料、災情與相關資訊,本報告針對池 上斷層等斷層沿線進行調查,以確認是否發生相關變形現象,成果 簡述如下。

依據中央氣象局地震報告,震度以臺東縣長濱最大,達到6弱, 花蓮縣玉里5強,南投、嘉義、高雄、臺東、臺中等地達4級。

由中央氣象局提供之地震資料與震源機制之解算(圖 10),其 成果顯示可能之斷層面為東北走向、朝東南或西北傾,屬逆斷層機 制。惟依據目前資料,無法證明該地震與本所現已公布之活動斷層 有關。

CWB 中央氣象局

USGS

圖 10、中央氣象局提供之寬頻 CMT 震源機制解(規模 6.4 地震)。

參、地表地質調查

此次地震發生後,當天本所構造與地震地質組同仁即刻著手蒐 集地震、災情與其它可能相關資訊,經主震及餘震震源投影與震度 範圍分析,推測為海岸山脈中段至南段島弧逆衝產生破裂所致,滑 移面為東北走向與傾斜約60度,延伸至地表約為池上斷層北段,瑞 穗以南到池上或關山之間,由於此次餘震震源深達22.6公里,研判 於地表可能產生地表破裂,於是針對東部縱谷斷層、奇美斷層等沿 線進行巡查,以確認是否發生相關地表破裂或相關變形現象。

調查範圍為花蓮縣花蓮市以南至臺東縣臺東市縱谷沿線,鄰近 震源位置鄉鎮與臺11線花蓮海岸公路(圖 11),最後調查結果,分以 下四部分說明:池上斷層、其他斷層、土壤液化現象、及其它受地 震引發之現象。

圖 11、0323 地震地表破裂調查結果分布圖。

一、池上斷層沿線調查結果

在瑞穗到玉里之間,池上斷層之上盤,部分區域可見到壓縮引 起的地表局部破裂現象;高寮大橋、玉里舊鐵道橋、長富大橋、崙 天大橋與寶華大橋等橋樑在斷層帶有顯著之潛移跡象,導致橋墩上 伸縮縫均有原已存在之左移與抬升破裂現象,於此次地震也伴有新 生破損。玉里舊鐵橋南北兩側沙洲,有相應之破裂裂隙,與池上斷 層位置相近,斷層東側之橋樑表層結構物受推擠拱起。

於關山鎮電光地區、池上鄉萬安、大坡池;富里鄉富南、學富 路及中山路沿線也有發現建物受擠壓而有新生破損;池上斷層跡沿 線部分河堤、道路等人工建物也伴有新生擠壓破損。

相關照片請參閱圖 12至圖 19。

圖 12、麻汝附近農路上一系列擠壓拱起裂隙,恰位於池上斷層活動 斷層地質敏感區範圍內,多數裂隙產生新擴張情形(向東拍 攝)。

圖 13、富里鄉中山路富禮教堂圍牆及周圍地區有多處破裂及錯移現 象。

圖 14、電光地區水圳旁人工堤受到擠壓,拱裂現象加劇。

圖 15、玉里舊鐵橋東側,橋梁表層柏油受擠壓撓曲。

圖 16、富北地區田邊擋土牆有受壓拱起及破裂現象。

圖 17、萬安社區道路旁矮牆輕微擠壓鼓起破裂現象,道路對側牆面 亦可發現輕微裂痕。

圖 18、池上斷層之上盤,部分區域可見到壓縮引起的地表局部破裂 現象。

圖 19、池上鄉大坡池附近道路與土地公廟,過去成功地震造成地表 破裂或人工結構物破壞之處,此次震後產生新的破裂現象。

二、其他斷層沿線調查結果

玉里斷層沿線除玉興橋與旁邊堤防外,無明顯地震相關之變形 或人工結構物破壞;瑞穗斷層除秀姑巒溪遊客中心人工建築物有結 構破壞外無明顯地震相關之變形;奇美斷層於德武、春日、豐濱沿 線有地表局部破裂現象;嶺頂斷層則未見任何破裂變形現象。 相關照片請參閱圖 20至圖 23。

圖 20、瑞穗斷層跡附近,僅秀姑巒溪遊客中心人工建築物有結構破 壞、地面磁磚拱裂現象。

圖 21、德武地區奇美斷層附近,建物及地表局部破裂現象。

圖 22、春日地區奇美斷層線上,建物及地表部新生推擠破裂現象。

圖 23、豐濱地區奇美斷層線上,部分道路壓縮引起的地表局部破裂 現象。

圖 24、高寮大橋東側, P18 至 20 欄杆與伸縮縫舊有潛移受搖晃擠壓 產生新破損,橋下河床小規模破裂(向西北、向北拍攝)。

三、受地震引發土壤液化現象

目前調查僅見玉里大橋、高寮大橋與瑞穗大橋附近具小規模液 化噴砂現象(圖 24~圖 27),後續調查並未見其他河域有液化噴砂現象。

圖 25、玉里大橋下具小規模液化噴砂現象。

圖 26、俯瞰玉里舊鐵橋北側,沙洲受強地動產生的裂隙與噴砂,位 置接近池上斷層潛移抬昇導致落差處。

圖 27、瑞穗大橋附近具小規模液化噴砂現象(旺財應用地質技師事務所提供)。

四、其它受地震引發之現象

根據由過去經驗,推測地震規模5上下,可能伴隨強烈地表加速 度引起道路與人工建築物之結構破壞,而位在坡度較陡區域之結構 物可能產生裂隙與邊坡滑動,衣德成技師於地震發生後立即連繫, 並進行玉長、長濱與瑞港公路調查,確認數處邊坡滑動與建物破裂 之現象(圖 28~圖 31)。

圖 28、玉長公路強烈地表加速度引起道路與人工建築物之結構破壞 (旺財應用地質技師事務所提供)。

圖 29、玉長公路強烈地表加速度引之邊坡滑動(旺財應用地質技師 事務所提供)。

圖 30、瑞港公路強烈地表加速度引起邊坡落石(旺財應用地質技師 事務所提供)。

圖 31、玉興橋與側翻預力橋梁(旺財應用地質技師事務所提供), 鄰近玉興橋的南側堤防受擠壓鼓起破裂。

五、小結

- (一) 20220323長濱地震推測為海岸山脈深部,一向東傾斜之逆衝構 造活動所致。此次調查重點為確認是否可能於地表見到其相關 變形,甚至是引發地表破裂。
- (二)經野外實查結果,在瑞穗到玉里之間的池上斷層,其上盤部分 區域可見到壓縮形式小規模破裂:高寮大橋、玉里舊鐵道橋、 長富大橋與崙天大橋等橋樑在斷層帶有顯著的潛移跡象,此次 地震導致橋墩上伸縮縫均新生破裂,多呈左移與抬升。
- (三) 玉里斷層部分:除玉興橋與旁邊堤防外,無明顯地震相關之變 形或人工結構物破壞;瑞穗斷層部分:除秀姑巒溪遊客中心人 工建築物有結構破壞外,無其他區域新增明顯與地震相關變形; 奇美斷層於德武、春日、豐濱沿線局部產生小規模地表破裂現 象;嶺頂斷層則未見任何新生破裂變形現象。
- (四) 土壤液化現象僅見於玉里大橋、高寮大橋與瑞穂大橋附近,均 為小規模液化噴砂現象。
- (五)由過去經驗,推測震度規模五上下,在坡度較陡區域之結構物可能產生邊坡滑動與裂隙,於玉長公路、長濱與瑞港公路確認 數處之上下邊坡滑動與建物破裂。

肆、地表變形觀測結果

除了野外地質調查部分,同時進行大地測量,進行地震前後之 地表變形觀測,動員人力涵蓋本所構造與地震地質組全組大部分人 員,參與之同仁有林啟文(組長)、石同生(科長)、陳建良(科 長)、林燕慧、劉彥求、陳盈璇、梁勝雄、梁均合、周稟珊、范力 仁、黃志遠、鄭智仁、林揚閱、王怡方、潘乙喬、李忠勳。

觀測部分,整合GNSS連續追蹤站、GNSS移動站、精密水準測量,以及合成孔徑雷達干涉法等觀測方法與資料,進行同震變形分析。

一、東部地區十年來的地表變形情形

經濟部中央地質調查所長期於本區進行精密水準測量(圖 32) 與衛星導航系統(Global Navigation Satellite System, GNSS)之觀測 (圖 33)。

水平速度場顯示本區位移方向為北偏西,每年位移速率超過3公分,於2013年之瑞穗地震、2018年之花蓮地震,改變了較長時期穩定之速度場,故在評估花東地區速度場時,考慮地震的影響,將同震時期的顯著變形量扣除,將速度場區分三個時間段分別估算不同區間的速度場,得到2002至2013年水平速度量值分布於13.6-70.2 mm/yr、2013至2018年速度量值9.12-69.8 mm/yr、2018至2021年速度量值9.8-63.2 mm/yr(圖 34,景國恩等,2021)。

垂直速度場方面,透過精密水準測量觀測到,在花東縱谷東側 的海岸山脈與西側的中央山脈變形機制在北、南段差異顯著 (Chen,et al.,2021),海岸山脈南段沉陷較小,北段垂直變形則大致 呈現下陷,跨池上斷層的兩側有不同的運動方向,東側約有 10mm/yr 的抬升速度,而西側約有10 mm/yr的沉降速度,其中光復- 豐濱測線在2013年瑞穗地震後沉陷速度變大,值約13.9-34.8 mm/yr。 精密水準測量時間序列分析結果顯示,紅葉-靜浦、龍澗-嶺頂及光 復-豐濱測線,在2009年以及2013年瑞穗地震後均發生速度場之變化 (圖 35)。整體而言,東部地區由於處於板塊聚合處,速度場相較 臺灣其他地區快速許多。

圖 32、0323 地震後,本所於野外水準測量工作實例。水準測量為藉由 求得兩標尺間的高度差,進而求取整段施測路線的總高度差值。

圖 33、0323 地震後,本所於野外 GNSS 測量工作實例。

圖 34、東部地區相對於澎湖白沙站 (S01R)之水平方向速度場,彩色 色階為資料解算之速度場分布色階圖。(a)表示 2002-2013 年速度 場,(b)表示震後 2013-2018 年速度場,(c)表示震後 2018-2021 年 速度場。

圖 35、東部地區相對於澎湖白沙站 (S01R)之垂直方向速度場,彩色 色階為資料解算之速度場分布色階圖。(a)表示 2002-2013 年速度 場,(b)表示震後 2013-2018 年速度場,(c)表示震後 2018-2021 年 速度場。

二、同震水平位移情形

為瞭解東部地區於0323地震後的變形情形,我們運用GNSS連續 追蹤站觀測資料及GNSS移動站資料進行聯合分析,共計使用27個 GNSS連續追蹤站(圖 36)資料進行整體平差與解算;移動站的部分共 計完成花蓮、臺東地區共100處觀測。由於移動式GNSS測量屬非連 續性資料,因此利用階層函式以等速度擬合坐標時間序列來獲得同 震位移。

震後較快速的變形結果由GNSS連續追蹤站(Continuous GNSS) 取得,利用固定場址設立的天線架進行長期且連續地精密定位(圖 37)以達到地表變形分析目的。觀測資料記錄間隔為每1秒一筆及每 30秒一筆,藉由資料紀錄密度的差異特性,分別運用於同震及間震 時期,衛星接收資料以網路即時將數據回傳至控制室,配合精密星 曆進行解算,得到每個站即時的坐標,藉此獲取同震的地表變形訊 息。

觀測結果顯示,水平方向的最大同震位移,為震央北方的大港 口測站,(測站編號:KNKO,東經121.5057度,北緯23.4722度)。 同震位移水平分量為向東53.0 mm、向北34.1 mm。而位於震央西南 側的長濱站(測站編號:PING,東經121.4543度,北緯24.3195度), 同震抬升量為71.0 mm,同震位移水平分量為向東17.0 mm、向南 36.3 mm(表 1、表 2)。同震位移結果顯示此次地震造成之同震位 移方向由北往南以順時針方向旋轉,震央北邊以往東北方向運動之 方向為主,其中以大港口及豐濱測站(測站編號:FONB)有較大之 量值,震央南邊則由長濱測站的東南方向運動往西南方逐漸轉為西 南方向運動(圖 38)。

-36-

圖 36、東部地區 GNSS 連續追蹤站分布圖。

圖 37、GNSS 連續追蹤站外觀,灰色天線罩內為天線所在位置,隨時接 收衛星訊號,即時透過網路將觀測資料傳至控制室處理與解算。

圖 38、東部地區 3 月 23 日地震之水平方向同震位移分布圖,箭頭代表水 平位移方向、長度代表量值,彩色色階顯示等值化之成果。

三、同震垂直位移情形

垂直方向的位移部分,主要透過精密水準測量與GNSS垂直方向 的觀測結果獲得。精密水準測量外業方式通常為三人一組進行,一 人在中間透過水準儀進行觀測,前、後豎立標尺。藉由觀測前、後 標尺的讀數(fi、ri)相減後得到兩標尺間的高程差(Δhi)(圖 39),逐站累積計算後就可以獲得二個水準點的高程差值。一般多 於夜間施測,若於白天施測時,觀測時間應避開艷陽高照之時段測 量。觀測時間於冬天早上於黎明至10時,下午於15~17時;夏天早上 於黎明至9時,下午於16~19時。

0323地震後本所進行之精密水準測量作業,由北而南計有龍澗-嶺頂測線、光復-豐濱測線、紅葉-靜浦測線及東成-富岡測線等4條, 總計全長約94公里,主要通過嶺頂斷層、瑞穗斷層、奇美斷層、鹿 野斷層及利吉斷層等,水準測線長度及施測時間詳如表3與表4。

各水準測線計算時均以最西側點位當控制點,假設其高程變化 為零,再依據地震前、後的高程值相減獲得各水準點的高程變化量。 水準點間距約為300-500公尺,近斷層處點位密度較高。綜觀0323地 震後之精密水準測量結果,變異最大之處位於紅葉-靜浦測線,位於 海岸山脈東側瑞港(GA07)測點,抬升達125mm,逐步往東西方向 下降,此測線同時為最靠近震央之測線;紅葉-靜浦測線北側之光復 -豐濱測線最大變異處同樣位於海岸山脈東側的八子灣(GH41)測 點,抬升達39mm;龍澗-嶺頂測線與東成-富岡測線垂直變化則在 20mm以內(圖40)。

GNSS測量部分,因受限於地表以下之衛星訊號受阻擋,於垂直 方向之觀測精度較差,但分布廣泛、密度較高仍可瞭解廣域之變形 趨勢。震央20公里範圍內之震後垂直方向位移以抬升為主,其中於 海岸山脈東側之測站最大值達140mm之同震抬升量值(圖 41),逐 步往西遞減至池上斷層仍有約50mm之抬升量。

-40-

圖 39、水準測量基本原理示意圖 (梁勝雄與陳建良, 2019)。

圖 40、東部地區 3 月 23 日地震之精密水準測量結果。

圖 41、東部地區 3 月 23 日地震之垂直方向同震位移分布圖,紅色箭頭代 表垂直抬升方向、藍色箭頭代表垂直下陷方向、長度代表其量值, 彩色色階顯示等值化之成果。

四、合成孔徑雷達差分干涉觀測結果

將地震前的合成孔徑雷達影像當作參考影像,地震後的影像作為主影像,進行干涉演算,成功量測到地震前、後雷達影像的相位

差,這個方法稱為合成孔徑雷達差分干涉技術(Differential Interferometric SAR, DInSAR)。此方法假定航空器的飛行高度皆 相同,待測物變成大地,如果某地點地表沒有變化,則相位差為0; 如果產生相位差,表示是衛星與地表之間距離變化所造成(張中白, 2005;梁勝雄等2011;梁勝雄等,2016)。

將相位差的變化,賦予不同的顏色,如把相位從-π到+π,設定 為從紅色到紫色,形成一圈一圈如同彩虹般的顏色,稱為干涉環 (interference rings)(圖 42),現今此方法已經成功應用在地震、 火山、地層下陷,以及山崩潛勢等地質事件引起的地表變形事件 (張中白,2005;梁勝雄等2011;梁勝雄等,2016)。

為觀察2022年3月23日凌晨發生於花蓮近海,地震規模達6.6之 地震同震地表變形,我們利用DInSAR技術分析歐洲太空總署哨兵衛 星(Sentinel-1A)分別在2022年3月14日和3月26日所拍攝的雷達影 像(圖43),協助我們瞭解地震發生時地表的活動情形。

哨兵1號衛星由兩顆人造衛星組成,發射時間分別為2014年及 2016年。於2014年4月3日發射的1A衛星搭載一組12公尺長的C波段 合成孔徑雷達,並安裝有兩片10公尺長的太陽能電池板,可執行任 務包括北極海冰融溶及海洋環境監測、地表變動觀測,以及地表森 林、水及土壤等資源調查與監控等多用途之環保資源衛星(梁勝雄 等,2016)。

本次地震的震央位於秀姑巒溪出海口外,距離震央最近的近岸 區域,理論上應有較明顯之地表位移,然而礙於海岸山脈植被之影 響,造成兩幅影像之間的同調性差異較大,僅約略可見數個模糊的 差分干涉環分佈在花蓮豐濱和臺東長濱之間,此外,在花蓮瑞穗和 玉里市中心也發現有局部的干涉環產生。

-44-

進一步進行相位解算,我們取得AA'與BB'剖面(圖44),剖面 中之黑線為地形,紅色線為擬合之視衛星方向(Line of. Sight, LOS) 之結果,灰色區塊為斷層位置,由AA'剖面能觀察到,跨玉里斷層 與跨瑞穗斷層皆有約10mm的視衛星方向縮短量,至奇美斷層則已經 不明顯;由BB'剖面能觀察到,跨池上斷層有約30mm之視衛星方向 縮短量。

圖 42、以監測火山地表變形為例,利用不同時間的合成孔徑雷達影像, 進行干涉演算,得到雷達影像的相位差,是衛星與地表之間距離 變化所造成(改繪自張中白,2004;梁勝雄等,2016)。

圖 43、歐洲哨兵衛星 1A 之合成孔徑雷達差分干涉同震地表變形影像, 影像拍攝時間為 2022 年 3 月 14 日及 3 月 26 日。

圖 44、歐洲哨兵衛星視衛星方向剖面分析,剖面中之黑線為地形,紅色 線為擬合之視衛星方向(Line of. Sight, LOS)之結果,灰色區塊 為斷層位置。

五、斷層模擬結果

由震源機制解與主、餘震的空間分布指出(圖 45),本次地震 主要的孕震構造可能是北北東-南南西走向,且向東傾之斷層面;根 據2022年玉里地震的震源模型及主餘震的空間分布,建構北北東-南 南西走向且向東傾之斷層面,傾角設定為62°,深度則為8-40公里, 以建立本次地震的斷層幾何,作法上是將斷層面劃分成數十個小斷 層面(patch)以求取同震斷層滑移量及主要滑移分布。

反演地表變形觀測之最佳模型解指出:此斷層之滑移量主要介於500-600 mm,分布在深度約14-28 km的位置,投影至地表則位於 主震震央與臺東長濱鄉之間,斷層滑移形式以逆移運動為主,該斷 層之測地矩(M0)為9.41×1025 dyne-cm,相當於Mw 6.62(圖 46)。

-47-

圖 45、中央氣象局本次地震餘震分布及剖面圖。餘震時間自主震後至 2022年4月16日;震源機制解表示為2022年3月23日之地震; 剖面圖中黃色星號為震央位置,綠色實線為在此期間使用地震序 列資料並以最小二乘法推算之斷層面位置。

圖 46、斷層模型水平及垂直方向擬合結果。矩形為斷層投影至地表的位 置,顏色區別出滑移量的大小;震源機制解為主震震央位置;圓 圈為餘震分布。

六、地表變形觀測小結

本(2022)年3月23日於臺東沿海發生規模6.6的地震,震央位 於臺東縣長濱鄉外海(23.4337°N, 121.5150°E),震源深度約30.6 km。地震發生後,為瞭解本次地震的地表變形情形,本所即聯合各 機關共同蒐集全臺之GNSS連續站資料,並進行GNSS移動站與精密 水準測量觀測,對地表同震位移場進行解算與分析。

同震位移結果顯示,GNSS連續站最大同震位移位於震央北方的 大港口測站,同震抬升量為104.2 mm,同震位移水平分量向東為 53.0 mm;同震位移水平分量向北為34.1 mm。精密水準測量結果顯 示,抬升最大的處為海岸山脈東側瑞港(GA07)測點,抬升達 125mm;GNSS移動站測量部分於海岸山脈東側之測站最大值達 140mm之同震抬升量值。

由同震位移分布圖可見,此次地震造成之同震位移方向由北往 南以順時針方向旋轉,震央北邊以往東北方向運動之方向為主,其

-49-

中以大港口及豐濱測站有較大之量值,震央南方則由長濱測站的東 南方向運動往西南方逐漸轉為西南方向運動,垂直向位移則以抬升 為主,震央20公里範圍內之測站有30mm以上之同震抬升量值。

在衛星影像干涉結果方面,運用合成孔徑雷達差分干涉技術, 得到視衛星方向同震地表視衛變形結果,震央位於秀姑巒溪出海口 外,距離震央最近的近岸區域,理論上應有較明顯之地表位移,然 而礙於海岸山脈植被茂密之影響,造成兩幅影像之間的同調性差異 較大,僅約略可見數個模糊的差分干涉環分布在花蓮豐濱和臺東長 濱之間,在花蓮瑞穗和玉里市中心也有局部的干涉環產生,其中, 跨玉里斷層與跨瑞穗斷層皆有約10mm的視衛星方向縮短量;跨池上 斷層有約30mm之視衛星方向縮短量。

由震源機制解與主、餘震的空間分布指出:本次地震主要的孕 震構造極有可能是北北東-南南西走向、向東傾之斷層面,根據2022 年臺東沿海地震之震源模型,建立北北東-南南西走向且向東傾之斷 層面,來進行本次地震的斷層幾何,反演GNSS同震位移場估算斷層 滑移分布。最佳模型指出:斷層之滑移量主要分布在500-600 mm, 集中在深度約14-28 km的位置,此地震之測地矩(M0)為9.41× 1025 dyne-cm,相當於Mw 6.62。

(陳建良、梁均合、梁勝雄、陳盈璇)

-50-

表1GNSS 連續追蹤站同震位移資料表

	领府	结府	经度方向	緯度方向	垂直方向	经度方向	緯度方向	垂直方向
站號	經及 (ºF)	辉度 (°N)	位移量	位移量	位移量	標準差	標準差	標準差
	(Ľ)	(\mathbf{N})	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
CHEN	121.3736	23.0974	-5.3	-6.2	2.8	2.4	1.4	9.6
CHUL	121.1257	23.1324	-1.1	0.5	10.3	13.1	15.8	39.7
CHUN	121.3931	23.4529	4.7	6.2	58.6	3.3	4.0	15.3
DCHU	121.2806	23.2132	-6.3	-3.9	9.9	1.9	2.8	14.6
DNFU	121.4823	23.6851	10.2	12.8	2.8	11.3	6.8	31.1
DULI	121.3306	23.0257	-2.0	0.1	8.5	5.7	9.0	46.8
FLNM	121.4534	23.7463	6.0	3.7	5.5	4.4	1.8	10.4
FONB	121.5210	23.5982	27.0	46.2	42.9	2.5	1.9	7.3
FUDN	121.3293	23.2507	-8.8	-14.1	20.3	3.0	2.0	9.4
JPEI	121.3714	23.5316	13.8	-2.2	0.0	3.0	4.4	9.6
JPIN	121.3589	23.3411	-13.0	-15.3	46.9	3.3	3.2	9.1
JSU2	121.4238	23.4924	7.9	26.3	70.1	1.9	2.6	6.8
JULI	121.3182	23.3417	4.0	-11.3	0.9	2.7	1.9	9.8
KNKO	121.5057	23.4722	53.0	34.1	104.2	3.1	1.9	6.2
KUA2	121.1634	23.0496	1.6	0.7	1.3	2.7	2.6	8.1
MOTN	121.0269	23.2006	7.9	2.9	0.3	3.3	2.2	20.2
NIPU	121.4121	23.2433	-1.8	-28.3	30.6	2.6	1.7	9.2
PING	121.4543	23.3195	17.0	-36.3	71.0	2.3	1.7	6.7
SHAN	121.1995	23.1089	1.1	0.6	3.6	1.6	2.3	10.3
SHUL	121.5627	23.7876	3.6	12.1	9.3	5.0	2.7	14.5
SLIN	121.4414	23.8119	3.5	0.8	2.2	14.9	7.5	30.6
TAPE	121.2309	23.1256	-3.2	-2.3	6.0	2.3	2.1	14.2
TAPO	121.2374	23.1271	-3.8	-2.6	4.7	2.2	2.1	8.0
TTCS	121.2151	23.1249	2.2	0.3	8.1	3.3	2.5	10.4
TUNH	121.3002	23.0752	-5.3	-1.8	0.1	2.9	2.0	8.0
WULU	121.0415	23.1693	3.4	1.2	-0.2	6.6	2.8	10.5
YUL1	121.3002	23.3214	8.4	-6.4	-12.8	12.5	8.8	30.7

表 2 GNSS 移動站同震位移資料表

點號	經度 (PE)	度 緯度 E) (°N)	經度方向 位移量	緯度方向 位移量	垂直方向 位移量	經度方向 標準差	緯度方向 標準差	垂直方向 標準差
	(⁻ E)		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
0308	121.1608	22.9422	7.29	1.28	-8.85	3.05	1.69	3.31
0943	121.1383	22.7793	10.27	-0.65	11.91	2.43	1.47	3.10

9094	121.6474	24.1295	0.54	8.76	41.44	2.99	2.23	4.60
9096	121.6178	24.1052	1.25	2.71	17.27	3.25	2.38	5.03
9115	121.4774	23.8232	28.21	8.79	7.30	3.17	2.37	5.28
9117	121.4495	23.8078	8.21	9.04	2.45	3.02	2.23	4.88
9157	121.2422	23.1658	3.76	7.49	-21.14	3.19	2.22	4.75
9160	121.2128	23.1212	2.86	3.13	-29.24	2.80	1.66	3.64
9172	121.1452	22.9318	-13.25	3.23	4.12	3.10	1.66	3.40
9176	121.1000	22.8997	-10.47	4.46	-21.01	3.45	2.38	5.20
9194	121.0397	22.7042	-2.32	-0.62	19.75	2.91	2.07	4.56
A001	121.5906	23.9510	-11.20	1.81	79.54	2.82	2.30	5.02
A011	121.5686	23.7959	-0.51	14.40	-27.37	3.15	2.32	5.18
A019	121.5485	23.7026	27.54	31.56	-23.05	3.23	2.20	4.78
A029	121.5093	23.5466	33.51	61.59	68.49	3.38	2.30	5.50
A032	121.5045	23.4999	58.04	51.97	140.10	3.14	2.19	5.40
A041	121.4800	23.4011	49.12	-5.07	94.34	3.10	2.26	5.49
A047	121.4419	23.3043	37.86	-35.24	112.48	3.00	2.38	5.06
A056	121.4019	23.1722	14.44	-12.19	40.69	2.94	2.11	4.60
A063	121.3539	23.0815	-1.12	8.20	0.68	3.07	2.20	4.85
A068	121.3237	23.0117	4.09	-0.31	-1.72	3.15	2.33	5.07
A081	121.1985	22.8573	1.31	6.33	16.92	3.26	2.32	5.32
A086	121.1934	22.7938	2.75	-1.43	-46.26	3.45	2.21	4.75
E012	121.4164	23.1251	0.63	-14.84	24.15	2.72	1.58	3.68
E062	120.9525	22.6431	-6.79	10.17	-5.24	2.97	2.08	4.37
E084	121.1421	22.7534	4.68	-5.41	34.78	2.82	2.03	4.30
E306	121.1093	22.8099	7.55	4.94	-7.03	2.35	1.43	2.98
E315	121.5869	23.8877	6.69	12.56	2.30	2.88	2.10	4.46
E319	121.6164	24.0500	-16.47	-12.15	70.94	2.80	2.18	4.64
E322	121.1227	22.7752	3.09	-1.18	13.84	2.92	2.02	4.16
E333	121.2799	23.1030	0.53	-14.38	29.07	2.97	1.64	3.61
E341	121.3550	23.3040	-14.35	-20.36	51.79	2.84	1.68	3.46
E349	121.3248	23.3146	5.35	-21.24	-0.73	2.50	1.47	3.11
E356	121.1985	23.0369	16.62	0.65	5.60	2.53	1.51	3.15
E373	121.2880	23.2397	-0.54	-9.91	-3.00	2.47	1.60	3.34
E407	121.1475	22.8178	-5.32	4.87	36.00	3.33	1.81	3.98
E415	121.5730	24.0045	-12.72	36.50	11.19	3.16	2.24	5.19
E430	121.2225	23.0968	-1.92	1.24	39.75	2.96	2.14	4.58
E549	121.5406	23.8867	27.51	14.45	-19.35	3.24	2.15	5.05
E801	121.3184	23.3416	4.56	-14.33	-6.18	2.56	1.55	3.51
E906	121.2654	22.9108	5.50	8.67	-4.70	2.89	2.10	4.54

G970	121.6040	23.9254	20.88	-9.87	38.35	2.45	1.80	3.68
G972	121.5955	23.9252	44.07	-24.38	-3.00	2.54	1.93	4.55
G979	121.5353	23.9450	47.59	-42.38	19.97	2.22	1.76	3.93
G999	121.4597	23.6557	6.63	35.47	-11.39	3.77	2.55	6.78
GA03	121.4371	23.6616	13.18	-26.24	29.17	2.67	1.54	3.42
GA04	121.4326	23.6623	18.59	-12.41	9.04	2.60	1.64	3.70
GA05	121.4954	23.4621	69.13	23.83	105.03	2.57	1.59	3.54
GA11	121.4695	23.4877	54.85	52.58	172.93	4.38	2.60	5.89
GA22	121.4291	23.4969	27.12	38.48	34.97	3.08	1.94	4.82
GA26	121.4004	23.4995	31.54	8.14	57.10	2.76	1.63	3.90
GA28	121.3910	23.5070	36.08	-7.77	43.20	2.59	1.59	3.46
GA32	121.3736	23.4975	36.72	-11.59	22.06	3.05	1.73	3.83
GA34	121.3562	23.4942	29.29	-16.79	31.68	2.71	1.62	3.72
GA35	121.3264	23.4914	31.59	-14.88	39.30	2.76	1.74	4.06
GA37	121.6081	23.9836	1.26	41.19	9.92	2.44	2.02	4.17
GA40	121.5817	24.0036	-4.03	35.03	-4.24	2.67	1.92	4.04
GA41	121.5921	23.8442	0.12	10.04	-46.90	3.52	2.48	5.60
GA43	121.5197	23.8843	27.93	5.45	23.47	2.77	1.90	4.12
GC29	121.3394	23.3213	-50.30	-14.41	52.70	2.71	1.58	3.61
GC30	121.3166	23.3246	-8.27	-28.09	56.88	2.55	1.55	3.47
GC31	121.2484	23.1235	-15.63	-4.43	-4.90	3.77	2.15	5.16
GC33	121.4290	23.2855	15.27	-46.80	49.47	2.77	1.57	3.53
GC34	121.2927	23.0392	-15.77	-8.71	-60.48	2.70	1.65	3.60
GC35	121.2148	23.1248	6.72	-10.82	-15.94	2.54	1.53	3.36
GE02	121.3566	23.3947	-9.48	-5.71	20.39	2.59	1.67	3.76
GE08	121.4448	23.7300	17.63	3.75	10.04	2.70	1.89	4.39
GE42	121.0828	22.8357	7.14	4.18	15.27	2.79	1.60	3.88
GE43	121.0914	22.8606	-4.60	1.12	-27.90	3.16	1.66	3.62
GE46	121.6032	23.9867	6.22	35.91	14.16	2.42	2.00	4.16
GE52	121.2770	23.2019	15.78	-16.53	8.92	2.71	1.53	3.29
GE53	121.2653	23.2192	12.24	-12.34	-14.31	2.85	2.02	4.34
GE55	121.4110	23.7157	12.16	1.74	-7.34	2.80	1.91	4.34
GE56	121.4984	23.7267	3.04	13.23	15.02	2.68	1.70	3.85
GE57	121.4676	23.7544	11.89	1.02	17.53	2.76	1.94	4.24
GE63	121.6188	24.0069	39.16	-13.01	28.85	2.36	1.66	3.60
GE64	121.6089	24.0144	0.68	24.07	-30.30	2.59	1.89	4.05
H008	121.6313	23.9889	11.12	4.27	14.67	2.68	2.23	4.61
I130	121.1588	22.7919	5.83	-3.68	-1.34	2.49	1.54	3.46
S044	121.0224	22.6778	12.33	-2.75	11.14	2.52	1.49	3.22

S078	121.0452	23.1670	-6.01	18.32	10.60	3.28	1.79	3.81
S214	121.2405	22.9630	2.33	-6.41	-10.53	2.59	1.60	3.38
S220	121.3045	22.9712	7.14	-4.23	19.86	2.70	1.65	3.68
S232	121.2171	22.9430	-2.07	-12.75	7.24	3.00	1.88	4.44
S233	121.1599	23.0442	5.62	6.31	-28.50	2.67	1.61	3.60
S245	121.1373	22.9790	12.90	-3.75	-7.27	2.75	1.56	3.33
S264	121.1552	22.7602	28.46	3.41	-12.36	3.31	1.90	4.37
S273	121.0628	22.7653	2.33	4.21	-27.91	3.18	2.00	4.57
S280	121.0534	22.7907	-0.16	-1.26	7.17	2.47	1.49	3.07
S291	121.5603	23.7503	14.68	31.75	38.51	2.93	2.17	4.94
U027	121.6098	24.0814	-3.80	-3.22	-0.28	3.42	2.66	5.78
U028	121.5925	24.0553	9.24	12.39	-39.74	3.12	2.30	5.33
U037	121.6377	24.0080	0.33	-3.32	-18.04	2.69	2.32	4.77
U048	121.6154	23.9737	5.34	-3.38	16.39	3.05	2.55	5.18
U050	121.5755	23.9754	-8.29	5.24	21.53	2.85	2.45	5.01
U086	121.5096	23.8347	17.24	13.92	-38.47	2.94	2.18	4.74
U225	121.6294	24.0236	10.92	-2.03	3.88	3.58	2.63	6.71
V205	121.1181	22.7162	3.88	-1.05	36.62	2.81	2.05	4.35
W036	121.4116	23.4988	10.54	18.39	48.97	2.65	1.58	3.61
W048	121.1538	22.9013	5.16	-9.49	16.07	3.49	2.17	4.47

表3精密水準測量測線一覽表

測線名稱	觀測日期	山區長度(km)	平地長度((km)
嶺頂-龍澗測線	2022/04/03~2022/04/04	0	15
光復-豐濱測線	2022/04/06~2022/04/09	8	14
紅葉-靜浦測線	2022/03/28~2022/04/02	16	17
東成-富岡測線	2022/03/28~2022/03/31	10	14

表4精密水準測量同震位移資料表

龍澗-嶺頂測線

點號	點名	經度 (°E)	緯度 (°N)	垂直方向位移量 (mm)
N670	銅門國小	121.4936	23.9652	0.00
GE81	仁壽橋	121.5080	23.9571	-9.37
GI17	榕樹東	121.5116	23.9534	-9.56
GI18	初英南	121.5164	23.9506	-10.49
GI19	初英發電廠	121.5207	23.9495	-11.95
GE88	花蓮監獄	121.5260	23.9482	-12.50
G979	華興	121.5353	23.9450	-14.03

點號	點名	經度	緯度	垂直方向位移量
		(°E)	(°N)	(mm)
9108	木瓜溪橋	121.5430	23.9393	-15.39
G978	復興	121.5430	23.9380	-14.57
G977	初英	121.5527	23.9336	-11.65
G976	光華一鄰	121.5616	23.9314	-11.22
G975	光華五鄰	121.5703	23.9290	-9.66
G974	光榮砂石專業區	121.5830	23.9252	-9.37
G973	光華工業區	121.5914	23.9263	-9.75
G972	花蓮大橋西岸	121.5955	23.9252	-7.76
A003	嶺頂	121.6029	23.9243	-5.81
G970	東海岸風景區北	121.6040	23 0254	-6.95
	D		23.9234	

光復-豐濱測線

點號	點名	經度	緯度	垂直方向位移量
		(°E)	(°N)	(mm)
X004	光復節點	121.4273	23.6668	0.00
GA04	大安堤防	121.4326	23.6623	-1.22
A096	馬太鞍橋	121.4319	23.6634	-0.76
GA03	馬太鞍橋	121.4371	23.6616	-2.85
GA02	太巴塱國小	121.4475	23.6605	-0.95
A097	太巴塱國小	121.4479	23.6601	-0.05
GA01	東富村	121.4543	23.6582	7.54
G999	第二公墓	121.4597	23.6557	12.40
G998	光豐	121.4626	23.6541	15.62
A098	4.5K 路標	121.4635	23.6527	16.99
G997	展望	121.4679	23.6539	22.41
A099	11 甲 6K	121.4707	23.6509	26.56
U147	瑪達娜	121.4762	23.6510	29.49
A100	光豐路	121.4869	23.6464	32.78
G996	忠孝橋西	121.4922	23.6466	32.81
A101	觀世音佛寺	121.4891	23.6408	35.79
G995	泰來	121.4895	23.6356	36.10
A102	信義橋	121.4923	23.6311	31.59
G994	秀望	121.4949	23.6270	29.85
A103A	豐富	121.5008	23.6251	31.68
A104	英雄崗	121.5030	23.6194	33.19
G993	英雄崗	121.5043	23.6180	33.03
G992	丁子漏	121.5073	23.6107	35.19
GH40	增產橋	121.5111	23.6061	36.79
A105A	豐濱	121.5168	23.6034	34.93

mt ph	wh h	經度	緯度	垂直方向位移量
馬占 555	點名	(°E)	(°N)	(mm)
X305	豐濱節點	121.5214	23.6015	35.73
G991	豐濱國小	121.5194	23.5983	38.55
GH41	八子灣	121.5252	23.5975	39.25
A026	豐濱第一公墓	121.5283	23.5963	37.58
紅葉-靜浦測線				
	11. 万	經度	緯度	垂直方向位移量
點號	點名	(°E)	(°N)	(mm)
GA35	紅葉內溫泉	121.3264	23.4914	0.00
W031	紅葉內溫泉	121.3264	23.4909	-0.03
W032	紅葉大橋西	121.3324	23.4920	-7.72
U028	佳民	121.3361	23.4933	-8.33
W034	紅葉國小	121.3459	23.4949	-2.67
GA34	瑞穗牧場	121.3562	23.4942	-0.95
GA33	水利工作站	121.3655	23.4958	10.04
GA32	瑞穗國小	121.3736	23.4976	19.72
9135	瑞穗國中	121.3760	23.4993	19.39
GA30	大馬園	121.3825	23.5032	23.29
GA29	瑞岡橋西岸	121.3855	23.5040	25.67
GA28	瑞岡橋東岸	121.3910	23.5070	28.91
GA27	安夜溪	121.3910	23.5070	34 69
GA26	東部風景區	121.3991	23.3051	40.65
W035		121.1001	23.1993	50.33
GA25	苏子	121.1050	23.1905	50.33
W036		121.4008	23.4998	50.44
GI20	<u></u>	121.4110	23.4980	67.83
GI20	松子小井	121.4101	23.4989	72.66
	极了山北	121.4196	23.4977	/ 5.00
<u> </u>	旅う山路口	121.4244	23.4907	82.33
0A22	族行山	121.4291	23.4909	87.32
P026A	族行山北	121.4291	23.4969	87.08
GI23	<u></u>	121.4300	23.4992	87.06
<u>GI24</u>	可,其 僧 南	121.4335	23.5031	87.70
GA21		121.4356	23.5042	89.21
GA20	燈仔	121.4386	23.5033	93.57
GA19	馬山	121.4419	23.5026	96.36
S121	奇美國小	121.4463	23.4972	105.87
GI25	奇美教會	121.4468	23.5003	104.00
GA18	奇美西	121.4499	23.5040	102.72
GA17	奇美東	121.4539	23.5047	104.91
GA16	阿巴	121.4553	23.4993	112.44

點號	點名	經度	緯度	垂直方向位移量
		(°E)	(°N)	(mm)
GA15	奇嚴橋	121.4575	23.4963	116.52
GA14	阿魯鷲	121.4585	23.4966	116.78
GI26	奇美南	121.4579	23.4932	115.36
W044	灣潭	121.4572	23.4896	118.32
GA13	三流	121.4584	23.4892	118.55
GA12	老榕樹	121.4629	23.4898	117.74
GA11	秀姑橋	121.4695	23.4877	118.85
GA10	斷石	121.4749	23.4871	117.40
GA09	納納	121.4700	23.4814	120.78
GA08	亂石	121.4660	23.4770	122.78
GA07	瑞港	121.4728	23.4730	125.65
GA06	協進	121.4814	23.4720	124.10
A036	長虹橋頭	121.4874	23.4690	122.93
A037	靜浦	121.4965	23.4629	120.28
GA05	靜浦國小	121.4954	23.4621	121.58

東成-富岡測線

點號	點名	經度	緯度	垂直方向位移量
		(°E)	(°N)	(mm)
GF75	斑鳩淨水廠	121.0686	22.8359	0.00
GF76	晨曦會	121.0762	22.8368	0.97
GE42	東成國小	121.0827	22.8357	0.43
GF77	技能訓練所	121.0873	22.8315	2.00
9181	東成山莊	121.0936	22.8310	3.38
GF78	美濃高地	121.0984	22.8277	7.12
GF79	忠泰茶行	121.1023	22.8219	1.16
GF80	頂岩灣村口	121.1093	22.8232	5.07
S265	岩灣國小	121.1252	22.8048	7.74
GF83	利吉大橋	121.1336	22.8055	8.64
GF85	臺東大橋一	121.1456	22.7926	-4.57
GF86	富源橋	121.1529	22.7915	-3.41
GF87	富源村口	121.1579	22.7871	-3.23
205R2	富豐	121.1649	22.7800	-4.11
A088	海堡	121.1750	22.7768	-3.67
A087A	海堤	121.1831	22.7883	-1.57
A086	集岡	121.1934	22.7938	-0.33

伍、結論與建議

- 一、結論
 - (一) 此次20220323地震一般推測可能為海岸山脈深部,一向 東傾斜之逆衝構造活動所致。此次調查重點為確認是否可能 於地表見到其相關變形,甚至是引發地表破裂。經野外實查 結果,在瑞穗到玉里之間的池上斷層,其上盤部分區域可見 到壓縮引起小破裂區域;高寮大橋、玉里舊鐵道橋、長富大 橋與崙天大橋等橋樑在斷層帶有顯著的潛移跡象,導致橋墩 上伸縮縫均有舊的左移與抬升,這次地震亦有新生破損。
 - (二) 土壤液化現象僅見玉里大橋、高寮大橋與瑞穂大橋附近 具小規模液化噴砂現象;由過去經驗,推測震度規模五上下, 坡度較陡區域之結構物可能產生裂隙與邊坡滑動,確認數處 於玉長公路、長濱與瑞港公路之上下邊坡滑動與建物破裂。
 - (三) 同震位移結果顯示,GNSS連續站最大同震位移位於震央北方的大港口測站,同震抬升量為104.2 mm,同震位移水平分量向東為53.0 mm;同震位移水平分量向北為34.1 mm,此次地震造成之同震位移方向由北往南以順時針方向旋轉。 精密水準測量資料,抬升最大的處為海岸山脈東側瑞港(GA07)測點,抬升達125mm;GNSS移動站測量部分於海岸山脈東側之測站最大值達140mm之同震抬升量值。
 - (四) 在衛星影像干涉結果方面,因海岸山脈植被茂密影響, 造成兩幅影像之間的同調性差異較大,僅約略可見數個模糊 的差分干涉環分布在花蓮豐濱和臺東長濱之間,在花蓮瑞穗 和玉里市中心也有局部的干涉環產生,其中,跨玉里斷層與 跨瑞穗斷層皆有約10mm的視衛星方向縮短量;跨池上斷層

有約30mm之視衛星方向縮短量。

- (五) 由震源機制解與主、餘震的空間分布指出:本次地震主要的孕震構造極有可能是北北東-南南西走向、向東傾之斷層面,根據2022年臺東沿海地震之震源模型,建立北北東-南南西走向且向東傾之斷層面,來進行本次地震的斷層幾何,反演GNSS同震位移場估算斷層滑移分布。最佳模型指出:斷層之滑移量主要分布在500-600 mm,集中在深度約14-28 km的位置,此地震之測地矩(M0)為9.41×1025 dyne-cm,相當於Mw 6.62。
- 二、建議
 - (一) 由於引發本次地震之斷層並未出露地表,故所造成之災 情係地震表面波強烈搖動所致。因臺灣東部位於兩個板塊聚 合擠壓交界,是臺灣陸上地震最頻繁與平原區活動斷層最密 集之區域,大規模地震之發生機率較高,因此建議位於臺灣 東部地區之重要設施須重新檢討安全設計係數,並視需要進 行補強提高耐震能力。亦建議相關單位多進行宣導教育,增 加民眾有關地震避難之知識,方能減少地震發生可能帶來之 損失與傷害。
 - (二) 針對類似深藏在地底深處孕震構造,建議應持續加強地 震地質調查工作與地表變形觀測等活動斷層觀測網分析之能 力,並配合區域尺度微震之觀測進行構造解釋,期望能適時 提出預警訊息,作為防災與應變之參據。
 - (三) 本所活動斷層觀測網之觀測成果顯示,地殼不穩定性可 藉由長期觀測瞭解其變動趨勢並評估其安全性。此項工作需 充分的人力與經費配合,並且長期持續進行方能竟其功。希

望決策部門能持續支持本所針對全國活動斷層及地殼變動敏 感地區進行長期觀測。一旦發現異狀,即可適時提供預警, 作為災害防治與應變之參考。 致謝

本報告為中央地質調查所於0323地震後,進行現地調查及彙整許多資料撰寫而成,調查及撰寫期間承蒙下列單位及專家學者提供 資料與協助。

首先,感謝中央氣象局於本次地震後迅速提供地震報告及相關 震源機制資料。衛星導航系統連續測站資料由中央研究院地球科學 研究所、交通部中央氣象局、內政部地政司、內政部國土測繪中心、 經濟部水利署,以及花蓮縣政府等單位提供。

地震發生後不久,衣德成先生即致電本所同仁,討論地震相關 資料與可能災情位置,隨後至現地進行調查並分享成果,感謝其熱 心協助,特別是立即趕赴調查,才能在大雨前拍攝噴砂原貌。

測量部分,地變動觀測與斷層模擬分析由景國恩教授、張午龍 教授、莊昀叡教授、李易叡先生等人提供協助;合成孔徑雷達差分 干涉觀測部分由顏君毅教授、陳宏宇研究技師、盧志恒博士等人提 供協助,本所敬致謝忱。

- Chen, H. Y., J. C. Lee, H. Tung, C. L. Chen and H. K. Lee (2021) Variable vertical movements and their deformation behaviors at convergent plate suture: 14-year-long (2004-2018) repeated measurements of precise leveling around middle Longitudinal Valley in eastern Taiwan Journal of Asian Earth Sciences 218,doi.org/10.1016/j.jseaes.2021.104865.
- Cheng, S.N., Y.T. Yeh and M. S. Yu, 1996, The 1951 Taitung earthquake in Taiwan. Jour. Geol. Soc. China, 39(3), 267-285.Hsu, T.L. (1962) Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China, no.1, p.95-102.
- Kuo-Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., and Brown, D., (2018), Aftershock sequndce of the 2018 Mw6.4 Hualien earthquake in eastern Taiwan from a dense seismic array data set, Seismological Research Letters, doi: 10.1785/0220180233.
- 內政部(2014)一等水準測量作業規範。內政部編印,共 52頁, 2014年7月。
- 林啟文、陳文山、劉彥求、陳柏村(2009)臺灣東部與南部的活動 斷層。經濟部中央地質調查所特刊第23號。
- 陳文山(2016)臺灣地質概論,中華民國地質學會,第101-124頁。
- 陳文山、吳逸民、葉柏逸、賴奕修、柯明淳、柯孝勳、林義凱 (2018)臺灣東部碰撞帶孕震構造,經濟部中央地質調查所 特刊,第三十三號,第123-155頁。
- 張中白(2005)大地彩虹-合成孔徑雷達。科學發展月刊。第 390 期, 第 18-23 頁。
- 張國楨(2012)重要活動斷層調查特性研究—近斷層高精度地形資 料之判釋與分析(1/4)。經濟部中央地質調查所委辦計畫 成果報告書,共289頁。
- 梁勝雄與陳建良,2019。從地面到太空-全方位觀測地表變形。地 質。第38卷,第3期,第35-39頁。
- 梁勝雄、朱傚祖與李建成,2011。紐西蘭基督城地震之地質探究。 地質,第30卷,第1期,第8-13頁。
- 梁勝雄、張中白、陳建良、盧詩丁,2016。從天空看 0206 美濃地震 地表變形。科學研習,第55卷,第6期,第42-52頁。
- 景國恩、李易叡、張午龍、莊昀叡、顏銀桐、莊怡蓉、邵國士

(2021)重要活動斷層地區地表變形觀測與斷層潛勢評估
(1/2)。經濟部中央地質調查所110年度委託專業服務期末
報告書,共412頁。

- 經濟部(2014)活動斷層地質敏感區劃定計畫書-F0002池上斷層, 共 28 頁。
- 經濟部(2016)活動斷層地質敏感區劃定計畫書-F0014瑞穗斷層, 共22頁。
- 經濟部(2016)活動斷層地質敏感區劃定計畫書-F0015奇美斷層, 共 25 頁。

臺灣省氣象所(1952)中華民國 41 年地震報告。臺北,共83頁。