

20220620 光復地震地質調查報告 同震地表變形大地測量成果

封面照片:東部地區 0620 光復地震 GNSS 測量之水平方向同震位移 分布圖,箭頭代表水平位移方向、長度代表量值,彩色 色階顯示等值化之成果。

地表變形分析:陳建良、梁均合、梁勝雄

報告撰寫:陳建良、梁勝雄、梁均合、陳盈璇、 王怡方、潘乙喬

責任審閱:林啟文

日銾

目錄	I
圖目錄	II
表目錄	II
摘要	1
壹、地表變形觀測結果	2
一、東部地區十年來的地表變形情形	2
二、0323長濱地震同震觀測結果	5
貳、0620光復地震同震位移情形	6
參、合成孔徑雷達影像差分干涉觀測結果	12
肆、斷層模擬結果	15
伍、結論與建議	
致謝	23
參考文獻	

圖目錄

圖 1、0620 地震後,本所於野外水準測量工作實例
圖 2、0620 地震後,本所於野外 GNSS 移動站測量工作實例4
圖 3、東部地區相對於澎湖白沙站 (S01R) 之水平方向速度場4
圖 4、東部地區相對於澎湖白沙站 (S01R) 之垂直方向速度場5
圖 5、東部地區 0620 光復地震測量點位分布圖
圖 6、GNSS 連續追蹤站外觀9
圖 7、水準測量基本原理示意圖 (梁勝雄與陳建良, 2019)。9
圖 8、東部地區 0620 光復地震 GNSS 測量之水平方向同震位移分布
圖10
圖 9、東部地區 0620 光復地震 GNSS 測量之垂直方向同震位移分布
圖11
圖 10、東部地區 0620 光復地震水準測量之垂直方向同震位移圖12
圖 11、以監測火山地表變形為例,利用不同時間的合成孔徑雷達影
像13
圖 12、歐洲哨兵衛星 1A 之合成孔徑雷達差分干涉同震地表變形影
像14
圖 13、2022 年花蓮光復地震斷層模型水平向擬合結果16
圖 14、2022 年花蓮光復地震斷層模型垂直向擬合結果17

表目錄

表	1 (iNSS 連續追蹤站同震位移資料表20	0
表	2 0	iNSS 移動站同震位移資料表2	1
表	3 ÷	青密水準光復-豐濱測線同震位移資料表2	2

摘要

本報告以全臺全球導航系統(GNSS)連續站、GNSS 移動站、 精密水準測量與 Sentinel-1A 衛星雷達差分干涉影像(DInSAR)技 術等大地測量觀測方式觀測 0620 光復地震地表變形,並解算與分析 同震位移場。

GNSS 連續站觀測結果指出,最大同震位移位於震央北邊的東 富站(DNFU),抬升量為134.59 公釐(mm),同震位移水平分量 向東與向北分別為 37.32 mm 與 5.32 mm;GNSS 移動站最大同震位 為第二公墓站(G999),抬升量為153.2 mm,同震位移水平分量向 東與向南分別為 14.2 mm 與 76.6 mm;水準測量部分最大同震抬升 處為觀世音佛寺站(A101),抬升 251.0 mm;DInSAR 結果顯示有 超過 7 個彩虹干涉環,代表在視衛星方向有超過 200 mm 的位移量。

綜合 GNSS 連續站與移動站之水平同震位移分布顯示同震位移 方向在震央南側的測站位移往南位移量較大,且與 DInSAR 觀察之 位置相近。

壹、地表變形觀測結果

6月20日光復地震發生後,本所動員構造與地震地質組全組大部 分人員,進行野外地表地質調查與同震地表變形觀測等工作,參與 之同仁有林啟文(組長)、石同生(科長)、陳建良(科長)、林 燕慧、劉彥求、陳盈璇、梁勝雄、梁均合、周稟珊、范力仁、黃志 遠、鄭智仁、林揚閱、王怡方、潘乙喬、李忠勳。

本報告為同震地表變形觀測部分,分析GNSS連續追蹤站、 GNSS移動站、光復-豐濱測線精密水準測量,以及地震前後之合成 孔徑雷達影像差分干涉分析等觀測資料,綜合進行同震地表變形分 析,其他如區域概況與地表地質調查請參閱《20220620 光復地震地 質調查報告》(劉彥求等,2022a)在此不再贅述。

一、東部地區十年來的地表變形情形

經濟部中央地質調查所長期於本區進行精密水準測量(圖1) 與衛星導航系統(Global Navigation Satellite System, GNSS)之觀 測(圖2)。

水平速度場顯示本區位移方向為北偏西,每年位移速率超過3公分,於2013年之瑞穗地震、2018年之花蓮地震,改變了較長時期穩定之速度場,故在評估花東地區速度場時,考慮地震的影響,將同震時期的顯著變形量扣除,將速度場區分三個時間段分別估算不同區間的速度場,得到2002至2013年水平速度量值分布於13.6-70.2 mm/yr、2013至2018年速度量值9.12-69.8 mm/yr、2018至2021年速度量值9.8-63.2 mm/yr(圖3,景國恩等,2021)。

垂直速度場方面,透過精密水準測量觀測到,在花東縱谷東側的海岸山脈與西側的中央山脈變形機制在北、南段差異顯著 (Chen,et al.,2021),海岸山脈南段沉陷較小,北段垂直變形則大致

-2-

呈現下陷, 跨池上斷層的兩側有不同的運動方向, 東側約有 10mm/yr 的抬升速度, 而西側約有10 mm/yr的沉降速度, 其中光復-豐濱測線在2013年瑞穗地震後沉陷速度變大, 值約13.9-34.8 mm/yr。 精密水準測量時間序列分析結果顯示, 紅葉-靜浦、龍澗-嶺頂及光 復-豐濱測線, 在2009年以及2013年瑞穗地震後均發生速度場之變化 (圖4)。整體而言, 東部地區由於處於板塊聚合處, 速度場相較臺 灣其他地區快速許多。

圖 1、0620 地震後,本所於野外水準測量工作實例。水準測量為藉由求 得兩標尺間的高度差,進而求取整段施測路線的總高度差值。

圖 2、0620 地震後,本所於野外 GNSS 移動站測量工作實例。

圖 3、東部地區相對於澎湖白沙站(S01R)之水平方向速度場,彩色色
階為資料解算之速度場分布色階圖。(a)表示 2002-2013 年速度場,
(b)表示震後 2013-2018 年速度場,(c)表示震後 2018-2021 年速度
場。

圖 4、東部地區相對於澎湖白沙站(S01R)之垂直方向速度場,彩色色
階為資料解算之速度場分布色階圖。(a)表示 2002-2013 年速度場,
(b)表示震後 2013-2018 年速度場,(c)表示震後 2018-2021 年速度
場。

二、0323長濱地震同震觀測結果

0323長濱地震同震位移結果顯示,GNSS連續站最大同震位移位 於震央北方的大港口測站,同震抬升量為104.2 mm,同震位移水平 分量向東為53.0 mm;同震位移水平分量向北為34.1 mm,此次地震 造成之同震位移方向由北往南以順時針方向旋轉。精密水準測量資 料,抬升最大的處為海岸山脈東側瑞港(GA07)測點,抬升達 125mm;GNSS移動站測量部分於海岸山脈東側之測站最大值達 140mm之同震抬升量值。

在衛星影像干涉結果方面,因海岸山脈植被茂密影響,造成兩 幅影像之間的同調性差異較大,僅約略可見數個模糊的差分干涉環 分布在花蓮豐濱和臺東長濱之間,在花蓮瑞穗和玉里市中心也有局 部的干涉環產生,其中,跨玉里斷層與跨瑞穗斷層皆有約10mm的視 衛星方向縮短量;跨池上斷層有約30mm之視衛星方向縮短量。更多 有關0323長濱地震相關調查成果請參閱《20220323長濱地震地質調 查報告》(劉彥求等,2022b)。

貳、0620光復地震同震位移情形

為瞭解東部地區於0620光復地震後的變形情形,我們運用GNSS 連續追蹤站觀測資料(表1)、GNSS移動站資料(表2)與精密水準 測線資料(表3)進行聯合分析。本報告解算29個GNSS連續追蹤站 資料進行整體平差與解算,解算時間為6月13日至6月26日;移動站 的部分共計完成震後花臺東地區共計38處/測次觀測,精密水準測線 完成光復到豐濱測線,計22公里(圖5)。

震後較快速的變形結果由GNSS連續追蹤站取得,利用固定場址 設立的天線架進行長期且連續地精密定位(圖6),以達到地表變形 分析目的。觀測資料記錄間隔為每1秒一筆及每30秒一筆,藉由資料 紀錄密度的差異特性,分別運用於同震及間震時期,衛星接收資料 以網路即時將數據回傳至控制室,配合精密星曆進行解算,得到每 個站即時的坐標,藉此獲取同震的地表變形訊息。此外,由於移動 式GNSS測量屬非連續性資料,故利用階層函式以等速度擬合坐標時 間序列來獲得同震位移。

精密水準測量外業通常為三人一組進行,一人在中間透過水準 儀進行觀測,前、後豎立標尺。藉由觀測前、後標尺讀數(fi、ri) 相減後得到兩標尺間的高程差(Δhi)(圖7),逐站累積計算後就 可以獲得二個水準點的高程差值。一般多於夜間施測,若於白天施 測時,觀測時間應避開艷陽高照之時段測量。觀測時間於冬天早上 於黎明至10時,下午於15至17時;夏天早上於黎明至9時,下午於16 至19時。

-6-

綜合結果顯示,0620光復地震造成之同震位移現象,最大水平 位移在震央南方約5公里處(圖8)。此外,除了震央與震央10公里 左右有明顯之同震位移,其他地區並無顯著的同震位移現象。

進一步觀察,能發現GNSS連續站測得最大同震位移量,為東富 測站(DNFU),同震抬升量達134.59公釐(mm),同震位移水平 分量向東為37.23mm;同震位移水平分量向南為5.32mm。此外,在 震央西北方向的鳳林站(FLNM)及萬榮站(WARO)等測站亦觀 察到往東南方向運動之水平同震位移量,分別為24.27mm及19.36 mm,不過並無明顯之同震位移垂直量。

移動式GNSS部分,最大同震位移量為第二公墓站(G999), 同震抬升量達153.2mm, 垂直方向正負誤差為6.9mm,同震位移水平 分量向西為14.2mm;同震位移水平分量向南達76.6mm,其他馬太鞍 橋站(GA03)與大安堤防站(GA04),同震抬升量分別為97.8mm 與89.8mm,同震位移水平分量向西為43.6mm與52.7mm;同震位移 水平分量向南為64.2mm與55.9mm(圖9)。

由GNSS測量之垂直方向同震位移能觀察到瑞穗斷層西側垂直位 移為下降趨勢,西側垂直位移為抬升至奇美斷層西側最高,而奇美 斷層以東抬升趨勢逐漸不明顯。值得注意的是本報告GNSS連續站同 震資料解算天數為2022年6月13日至6月26日,共計14天,故可能導 致部分測站解算之垂直方向標準差過大,然未來有更多資料解算後, 其標準差也將隨之變小。

水準測量部分,與GNSS移動站共站之第二公墓站(G999)測 得抬升量值為183.4mm,正負誤差為1.8mm;水準測量之垂直方向同 震位移在測線西測馬太鞍橋站(A096)抬升量為往東至觀世音佛寺 (A101)點位有測線最大抬升量值達251.0 mm,繼續往東至信義橋

-7-

站(A102)抬升量為148.7mm,至秀望站(G994)顯著下降,其抬 升量為30.7mm,至測線西側豐濱第一公墓站(A026)抬升量為 4.4mm(圖10)。

圖 5、東部地區 0620 光復地震測量點位分布圖,包含 GNSS 連續站、 GNSS 移動站及精密水準測量點位。

圖 6、GNSS 連續追蹤站外觀, 灰色天線罩內為天線所在位置, 隨時接 收衛星訊號, 即時透過網路將觀測資料傳至控制室處理與解算。

平均海水面

圖 7、水準測量基本原理示意圖 (梁勝雄與陳建良,2019)。

圖 8、東部地區 0620 光復地震 GNSS 測量之水平方向同震位移分布圖, 箭頭代表水平位移方向、長度代表量值,彩色色階顯示等值化之 成果。

圖 9、東部地區 0620 光復地震 GNSS 測量之垂直方向同震位移分布圖, 箭頭代表水平位移方向、長度代表量值,彩色色階顯示等值化之 成果。

圖 10、東部地區 0620 光復地震水準測量之垂直方向同震位移圖,箭頭 代表垂直位移方向、長度代表量值。

參、合成孔徑雷達影像差分干涉觀測結果

將地震前的合成孔徑雷達影像當作參考影像,地震後的影像作 為主影像,進行干涉演算,成功量測到地震前、後雷達影像的相位 差,這個方法稱為合成孔徑雷達差分干涉技術(Differential Interferometric SAR, DInSAR)。此方法假定航空器的飛行高度皆 相同,待測物變成大地,如果某地點地表沒有變化,則相位差為0; 如果產生相位差,表示是衛星與地表之間距離變化所造成(張中白, 2005;梁勝雄等2011;梁勝雄等,2016)。

將相位差的變化,賦予不同的顏色,如把相位從-π到+π,設定 為從紅色到紫色,形成一圈一圈如同彩虹般的顏色,稱為干涉環 (interference rings)(圖11),現今此方法已經成功應用在地震、 火山、地層下陷,以及山崩潛勢等地質事件引起的地表變形事件 (張中白,2005;梁勝雄等2011;梁勝雄等,2016)。 哨兵1號衛星由兩顆人造衛星組成,發射時間分別為2014年及 2016年。於2014年4月3日發射的1A衛星搭載一組12公尺長的C波段 合成孔徑雷達,並安裝有兩片10公尺長的太陽能電池板,可執行任 務包括北極海冰融溶及海洋環境監測、地表變動觀測,以及地表森 林、水及土壤等資源調查與監控等多用途之環保資源衛星(梁勝雄 等,2016)。

為觀察2022年6月20日震央於花蓮光復之地震地表變形,我們利用DInSAR技術分析歐洲太空總署哨兵衛星(Sentinel-1A)分別在2022年6月18日和6月30日所拍攝的雷達影像(圖12),協助我們瞭解地震發生時地表的活動情形。

本次地震的震央位於花蓮光復地區,在影像上能觀察到約呈現7 至8個彩虹干涉環,相當於在衛星視角的方向上有200mm左右的位移 量。進一步觀察,能發現干涉環在空間上的分佈型態呈現同心圓狀, 其圓心約位在震央南方5公里處,與其他大地測量觀測結果吻合。

圖 11、以監測火山地表變形為例,利用不同時間的合成孔徑雷達影像, 進行干涉演算,得到雷達影像的相位差,是衛星與地表之間距離 變化所造成(改繪自張中白,2004;梁勝雄等,2016)。

圖 12、歐洲哨兵衛星 1A 之合成孔徑雷達差分干涉同震地表變形影像, 影像拍攝時間為 2022 年 6 月 18 日與 6 月 30 日。

肆、斷層模擬結果

由中央氣象局公布的震源機制解指出,本次地震的主要斷層面為東北-西南走向,並可能有向東南或西北方向傾斜的兩種型態。然而,根據地表同震位移場的型態指出,地表抬升主要發生在縱谷與中央山脈地區。為解析產生此地震之斷層參數,本報告使用GNSS連續站、GNSS移動站及精密水準測量資料,以斷層錯位模型(Okada, 1985,1992)建立初步的斷層模型來嘗試提供一個可能的震源模型。

由馬可夫鏈蒙地卡羅法(MCMC)進行斷層參數最佳解搜尋, 獲得走向211.9度、傾角31度之東北-西南走向,且往西北傾之斷層 面。接著,將斷層面劃分成數十個小斷層面(patch)以求取同震斷 層滑移量分布型態。目前本報告獲得之最佳模型解(圖13、圖14) 指出,此斷層之斷層滑移量主要介於700 mm - 750 mm,集中在深 度約4-8 km 的位置,斷層滑移以逆移運動為主。該斷層之測地矩 (M0)為2.00×1025 dyne-cm,相當於 Mw 6.17。

影至地表的位置,顏色反映滑移量的大小;震源機制解為主震震 央位置。

央位置。

伍、結論與建議

本(2022)年6月20日於花蓮光復地區發生規模6.0的地震,震 源深度約6.8公里。地震發生後,為瞭解本次地震的地表變形情形, 本所即聯合各機關共同蒐集全臺之GNSS連續站資料,並進行GNSS 移動站與精密水準測量觀測,對地表同震位移場進行解算與分析。

綜合結果顯示,0620光復地震與0323長濱地震孕震構造可能不 同。由0620光復地震之同震位移資料顯示GNSS連續站測得最大同震 位移量,為東富測站(DNFU),同震抬升量達134.59mm,同震位 移水平分量向東為37.23mm;同震位移水平分量向南為5.32mm。移 動式GNSS部分,最大同震位移量為第二公墓站(G999),同震抬 升量達153.2mm,同震位移水平分量向西為14.2mm。水準測線中, 觀世音佛寺站(A101)點位為測線最大抬升量值,達251.0mm。

在衛星影像干涉結果方面,運用合成孔徑雷達差分干涉技術, 得到視衛星方向同震地表視衛變形結果,在影像上能觀察到約呈現7 至8個彩虹干涉環,相當於在衛星視角的方向上有200mm左右的位移 量。進一步觀察,能發現干涉環在空間上的分佈型態呈現同心圓狀, 其圓心約位在震央南方5公里處與其他大地測量觀測資料結果吻合。

目前本報告獲得之最佳模型解指出,此斷層之斷層滑移量主要 介於700 mm – 750 mm,集中在深度約4 – 8 km的位置,斷層滑移以 逆移運動為主。該斷層之測地矩(M0)為2.00× 1025 dyne-cm,相 當於Mw 6.17。

本報告主要目的為將0620光復地震後同震地表變形之大地測量 觀測初步成果進行說明與公開,提供各界能參考,並進一步利用與 研究。臺灣東部位於兩個板塊聚合擠壓交界,是臺灣陸上地震最頻 繁與平原區活動斷層最密集之區域,地震發生機率較高,應持續加 強地震地質調查工作與地表變形觀測等活動斷層觀測網分析之能力, 並配合區域尺度微震之觀測進行構造解釋,期望能適時提出預警訊 息,作為防災與應變之參據。

本所活動斷層觀測網之觀測成果顯示,地殼不穩定性可藉由長 期觀測瞭解其變動趨勢並評估其安全性。此項工作需充分的人力與 經費配合,並且長期持續進行方能竟其功。希望決策部門能持續支 持本所針對全國活動斷層及地殼變動敏感地區進行長期觀測。一旦 發現異狀,即可適時提供預警,作為災害防治與應變之參考。

(陳建良、梁勝雄、梁均合、陳盈璇、王怡方、潘乙喬)

表1GNSS 連續追蹤站同震位移資料表

站名	站號	經度 (°E)	緯度 (°N)	經度方向 位移量 (mm)	緯度方向 位移量 (mm)	垂直方向 位移量 (mm)	經度方向 標準差 (mm)	緯度方向 標準差 (mm)	垂直方向 標準差 (mm)
布洛灣	BLOW	121.5713	24.1718	-0.83	-1.51	-2.36	2.1	4.3	20.2
成功	CHEN	121.3736	23.0974	-0.40	0.58	-9.45	1.0	1.6	5.3
成功	CHGO	121.3745	23.0983	-1.60	-1.40	-0.38	1.2	1.1	3.1
崇德	CHNT	121.6619	24.1492	-2.87	0.47	-0.55	2.0	1.2	3.9
春日	CHUN	121.3931	23.4529	-3.36	-0.20	-11.53	1.1	1.7	10.5
東竹	DCHU	121.2806	23. 2132	-0.26	0.78	-2.74	1.9	3.1	4.7
東富	DNFU	121.4823	23.6851	37.23	-5.32	134.59	5.0	2.7	13.2
都歷	DUL I	121.3306	23.0257	16.63	6.75	-34.11	4.3	4.9	28.7
鳳林	FLNM	121.4534	23.7463	10.04	-22.09	-0.75	2.3	1.4	9.4
豐濱	FONB	121.5210	23. 5982	-0.88	4.98	4.89	0.6	1.2	2.3
花蓮	HUAL	121.6135	23.9754	-1.43	-0.10	10.59	3.1	2.8	10.5
合歡山	HUAN	121.2726	24.1435	0.13	-1.43	-23.59	1.9	2.4	8.6
惠蓀林 場	HUYS	121.0294	24.0923	1.22	-3.37	-5.88	2.0	0.7	9.0
瑞穗	JSU2	121.4238	23.4924	-4.55	-6.28	-4.18	1.2	1.0	4.5
玉里	JULI	121.3182	23.3417	1.27	-2.58	0.76	0.9	1.3	3.6
高峰	KFN2	121.1168	23.9877	-0.20	-2.42	-7.73	1.3	0.4	2.3
關山國 小	KUA2	121.1634	23.0496	-0.05	-0.18	8.13	1.9	1.5	5.3
梅峰	MFEN	121.1725	24.0822	0.99	-4.14	-3.68	1.5	0.8	4.8
東華8	NDH8	121.6051	24.1157	0.57	1.76	-8.60	1.0	1.3	4.6
寧埔	NIPU	121.4121	23. 2433	2.17	-1.15	-1.11	1.5	1.0	5.5
水璉國 中	SHUL	121.5627	23. 7876	4.09	2.01	-18.20	2.9	1.9	3.7
新城	SICH	121.6544	24.1257	-1.48	-0.76	-8.30	1.7	1.5	2.8
壽豐	SOFN	121.5982	23.8703	1.94	0.23	7.25	2.0	1.8	6.9
池上福 原國小	TTCS	121.2151	23. 1249	4.89	2.91	-0.06	1.0	1.6	6.7
銅門	TUNM	121.4936	23.9652	4.17	-7.56	-27.90	1.5	4.7	16.2
萬榮	WARO	121.4409	23. 8120	9. 91	-16.64	1.89	2.0	1.8	9.2
霧鹿	WULU	121.0415	23. 1693	-3.10	-1.42	-5.58	3.0	1.6	11.8
東管處	YENL	121.6019	23. 9035	0.78	-1.10	5.62	1.1	1.1	4.8
玉里1	YUL1	121.3002	23. 3214	13.68	2.01	-4.67	8.3	4.3	16.2

表 2 GNSS 移動站同震位移資料表

點號	經度 (°E)	緯度 (°N)	經度方向 位移量 (mm)	緯度方向 位移量 (mm)	垂直方向 位移量 (mm)	經度方向 標準差 (mm)	緯度方向 標準差 (mm)	垂直方向 標準差 (mm)
9115	121.4774	23.8232	-4.20	-9.60	15.80	3.4	2.2	4.9
9117	121.4495	23.8077	11.60	-26.60	-8.00	3.3	2.1	4.5
A001	121.5906	23.9509	23.70	1.10	-45.60	3.2	2.3	5.2
A011	121.5685	23.7959	16.00	1.10	23.70	3.7	2.3	5.0
A019	121.5484	23.7026	29.90	4.20	-8.60	3.6	2.0	4.4
A029	121.5093	23. 5466	-0.30	21.30	-8.70	4.1	2.4	5.5
A032	121.5045	23.4999	-16.60	5.90	-0.10	4.5	2.8	6.1
A041	121.4799	23.4010	-11.20	5.60	30.90	3.3	2.3	5.4
E315	121.5868	23.8877	9.80	-2.80	-9.40	3.2	2.0	4.2
E549	121.5405	23.8866	-4.50	-7.30	5.90	4.0	2.7	5.9
E801	121.3183	23.3415	9.30	-9.90	13.00	3.2	2.1	4.8
G970	121.6040	23.9253	10.80	-4.20	-22.70	3.4	2.4	5.1
G972	121.5954	23.9251	-0.90	6.50	-14.30	3.9	2.7	7.1
G999	121.4596	23.6557	-14.20	-76.60	153.20	4.6	3.2	6.9
GA03	121.4371	23.6616	-43.60	-64.20	97.80	3.5	2.2	4.9
GA04	121.4325	23.6622	-52.70	-55.90	89.80	3.4	2.1	4.7
GA05	121.4953	23.4620	7.10	0.90	3.40	3.4	2.1	4.6
GA11	121.4694	23. 4877	4.90	-19.10	41.90	4.9	3.1	7.4
GA22	121.4290	23.4968	33.30	-26.30	103.60	4.6	3.1	7.5
GA26	121.4004	23.4995	-15.00	-29.20	-32.50	3.4	2.2	5.3
GA28	121.3910	23.5070	-13.80	-26.10	-3.10	4.0	2.6	5.1
GA32	121.3736	23.4975	-11.10	-21.50	-15.40	4.3	2.8	5.7
GA34	121.3562	23.4942	-18.50	-19.20	-15.20	3.3	2.1	4.7
GA35	121.3263	23.4914	6.40	-22.90	-19.90	3.4	2.3	5.4
GA41	121.5920	23.8442	12.80	0.80	0.90	4.0	2.6	6.0
GA43	121.5196	23.8843	2.60	0.00	-33.20	3.3	2.1	4.6
GC30	121.3165	23.3246	-14.50	-8.30	19.30	3.6	2.2	4.9
GE02	121.3565	23.3947	3.30	-9.40	22.20	3.3	2.2	4.8
GE08	121.4448	23.7300	16.40	-43.50	-7.90	3.2	2.0	4.6
GE55	121.4110	23. 7157	16.00	-35.50	-1.50	3.4	2.0	4.6
GE56	121.4983	23.7266	21.60	13.10	16.50	3.2	2.0	4.4
GE57	121.4676	23. 7543	12.30	-27.20	-22.00	3.3	2.1	4.5
S291	121.5602	23.7503	14.30	1.80	32.40	3.5	2.1	4.7
U050	121.5755	23.9754	16.20	0.30	-35.00	3.4	2.3	4.8
U086	121.5096	23.8346	-6.10	-8.10	-18.90	3.3	2.0	4.5
W036	121.4116	23. 4987	5.90	-12.50	-11.90	3.5	2.2	5.0
9115	121.4774	23.8232	-4.20	-9.60	15.80	3.4	2.2	4.9
9117	121.4495	23.8077	11.60	-26.60	-8.00	3.3	2.1	4.5

町町	即一夕	經度	緯度	垂直方向位移量
志	芯 石	(°E)	(°N)	(mm)
A096	馬太鞍橋	121.4319	23.6634	87.2
GA04	大安堤防	121.4326	23.6623	90.9
GA03	馬太鞍橋	121.4371	23.6616	104.9
GA02	太巴塱國小	121.4475	23.6605	142.5
A097	太巴塱國小	121.4479	23.6601	143.5
GA01	東富村	121.4543	23.6582	165.8
G999	第二公墓	121.4597	23.6557	183.4
G998	光豐	121.4626	23.6541	193.6
A098	4.5K 路標	121.4635	23.6527	195.1
G997	展望	121.4679	23.6539	202.1
A099	11 甲 6K	121.4707	23.6509	205.5
U147	瑪達娜	121.4762	23.651	218.9
A100	光豐路	121.4869	23.6464	233.8
G996	忠孝橋西	121.4922	23.6466	216.7
A101	觀世音佛寺	121.4891	23.6408	251.0
G995	泰來	121.4895	23.6356	244.4
A102	信義橋	121.4923	23.6311	148.7
G994	秀望	121.4949	23.627	30.7
A103A	豐富補點	121.5009	23.6251	27.8
A104	英雄崗	121.503	23.6194	26.8
G993	英雄崗	121.5043	23.618	23.9
G992	丁子漏	121.5073	23.6107	18.7
GH40	增產橋	121.5111	23.6061	18.2
A105A	豐濱	121.5168	23.6034	0.5
X305	豐濱節點	121.5194	23.6015	10.9
G991	豐濱國小	121.5252	23.5983	4.9
GH41	八子灣	121.5283	23.5975	5.6
A026	豐濱第一公墓	121.5283	23. 5963	4.4

表3精密水準光復-豐濱測線同震位移資料表

致謝

本報告為中央地質調查所於0620光復地震後,進行現地觀測及 彙整許多資料撰寫而成,相關經費由本所「斷層活動性觀測研究第 五階段」支持與提供,調查及撰寫期間承蒙下列單位及專家學者提 供資料與協助。

首先,感謝交通部中央氣象局於本次地震後迅速提供地震報告 及相關震源機制資料。衛星導航系統連續測站資料由中央研究院地 球科學研究所、交通部中央氣象局、內政部地政司、內政部國土測 繪中心、經濟部水利署,以及花蓮縣政府等單位提供;GNSS移動站 與精密水準測量委請中興測量有限公司協助施測。

地變動觀測與斷層模擬分析由中央大學張午龍教授、成功大學 景國恩教授、臺灣大學莊昀叡教授、中興工程顧問社李易叡先生等 人提供協助;合成孔徑雷達差分干涉觀測由東華大學顏君毅教授、 中央研究院研究技師陳宏宇博士與盧志恒博士等人提供協助,本所 敬致謝忱。

- Chen, H. Y., J. C. Lee, H. Tung, C. L. Chen and H. K. Lee (2021) Variable vertical movements and their deformation behaviors at convergent plate suture: 14-year-long (2004-2018) repeated measurements of precise leveling around middle Longitudinal Valley in eastern Taiwan Journal of Asian Earth Sciences 218,doi.org/10.1016/j.jseaes.2021.104865.
- Okada, Y.(1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 75, 1135-1154.
- Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America 82, 1018-1040.
- 內政部(2014)一等水準測量作業規範。內政部編印,共 52頁, 2014年7月。
- 張中白(2005)大地彩虹-合成孔徑雷達。科學發展月刊。第 390 期, 第 18-23 頁。
- 梁勝雄與陳建良(2019)從地面到太空-全方位觀測地表變形。地 質。第38卷,第3期,第35-39頁。
- 梁勝雄、朱傚祖與李建成(2011)紐西蘭基督城地震之地質探究。 地質,第30卷,第1期,第8-13頁。
- 梁勝雄、張中白、陳建良、盧詩丁(2016)從天空看 0206 美濃地震 地表變形。科學研習,第55卷,第6期,第42-52頁。
- 景國恩、李易叡、張午龍、莊昀叡、顏銀桐、莊怡蓉、邵國士 (2021)重要活動斷層地區地表變形觀測與斷層潛勢評估 (1/2)。經濟部中央地質調查所 110 年度委託專業服務期 末報告書,共412頁。
- 劉彦求、林燕慧、梁勝雄、陳盈璇、石同生、王怡方(2022a) 20220620 光復地震地質調查報告,經濟部中央地質調查所, 共36頁。
- 劉彥求、林燕慧、梁勝雄、陳建良(2022b)20220323 長濱地震地 質調查報告,經濟部中央地質調查所,共63頁。